Q1) \(x + 4\over 2\) - \(x + 6\over 5\) = [ \(3 x + 8\over 10\) ]
Q1) \(9\over x+ 2\) + \(7\over x +5\) = [ \(16 x + 59\over x^{2}+ 7 x +10 \)]
Q1) \(10\over x+ 4\) - \(3\over x -10\) = [ \(7 x -112\over x^{2}-6x -40 \)]
Q2) \(x + 6\over 2\) + \(x + 10\over 5\) = [ \(7 x + 50\over 10\) ]
Q2) \(10\over x+ 7\) + \(10\over x +2\) = [ \(20 x + 90\over x^{2}+ 9 x +14 \)]
Q2) \(8\over x+ 2\) + \(8\over x -7\) = [ \(16 x -40\over x^{2}-5x -14 \)]
Q3) \(x + 3\over 2\) - \(x + 9\over 5\) = [ \(3 x -3\over 10\) ]
Q3) \(8\over x+ 5\) - \(6\over x +4\) = [ \(2 x + 2\over x^{2}+ 9 x +20 \)]
Q3) \(9\over x+ 5\) - \(6\over x -5\) = [ \(3 x -75\over x^{2} -25 \)]
Q4) \(x + 8\over 2\) + \(x + 9\over 7\) = [ \(9 x + 74\over 14\) ]
Q4) \(4\over x+ 3\) + \(10\over x +6\) = [ \(14 x + 54\over x^{2}+ 9 x +18 \)]
Q4) \(5\over x+ 4\) + \(6\over x +5\) = [ \(11x + 49\over x^{2}+9x +20 \)]
Q5) \(x + 10\over 4\) + \(x + 9\over 3\) = [ \(7 x + 66\over 12\) ]
Q5) \(10\over x+ 4\) - \(4\over x +3\) = [ \(6 x + 14\over x^{2}+ 7 x +12 \)]
Q5) \(9\over x+ 8\) + \(10\over x +8\) = [ \(19 x + 152\over x^{2}+16x +64 \)]
Q6) \(x + 6\over 4\) + \(x + 6\over 3\) = [ \(7 x + 42\over 12\) ]
Q6) \(6\over x+ 2\) + \(10\over x +9\) = [ \(16 x + 74\over x^{2}+ 11x +18 \)]
Q6) \(3\over x+ 2\) + \(4\over x -3\) = [ \(7 x -1\over x^{2}-x -6 \)]
Q7) \(x + 9\over 4\) - \(x + 9\over 7\) = [ \(3 x + 27\over 28\) ]
Q7) \(9\over x+ 6\) - \(6\over x +4\) = [ \(3 x\over x^{2}+ 10 x +24 \)]
Q7) \(10\over x+ 7\) - \(5\over x -4\) = [ \(5 x -75\over x^{2}+3x -28 \)]
Q8) \(x + 6\over 2\) + \(x + 8\over 7\) = [ \(9 x + 58\over 14\) ]
Q8) \(7\over x+ 4\) + \(10\over x +8\) = [ \(17 x + 96\over x^{2}+ 12 x +32 \)]
Q8) \(6\over x+ 4\) + \(10\over x +7\) = [ \(16 x + 82\over x^{2}+11x +28 \)]
Q9) \(x + 8\over 5\) + \(x + 9\over 2\) = [ \(7 x + 61\over 10\) ]
Q9) \(7\over x+ 4\) + \(6\over x +3\) = [ \(13 x + 45\over x^{2}+ 7 x +12 \)]
Q9) \(8\over x+ 7\) + \(8\over x -9\) = [ \(16 x -16\over x^{2}-2x -63 \)]
Q10) \(x + 5\over 4\) + \(x + 8\over 7\) = [ \(11x + 67\over 28\) ]
Q10) \(10\over x+ 9\) - \(8\over x +6\) = [ \(2 x -12\over x^{2}+ 15 x +54 \)]
Q10) \(6\over x+ 2\) + \(10\over x -8\) = [ \(16 x -28\over x^{2}-6x -16 \)]