Mr Daniels Maths
Algebraic Fractions Multiplication and Division

Set 1

Set 2

Set 3

Q1) \(x + 10\over 10\) ÷ \(5 \over {x + 9}\) = [ \(x^2 + 19 x + 90\over 50\) ]

Q1) \(x + 9\over 7\) x \(10 \over{ x + 1}\) = [ \(10( x + 9) \over 7 ( x + 1)\) ]

Q1) \(x + 6\over 4\) ÷ \( x + 6\over x + 10\) = [ \(x + 10\over 4\) ]

Q2) \(x + 3\over 10\) x \(x + 10\over 7\) = [ \(x^2 + 13 x + 30\over 70\) ]

Q2) \(x + 10\over 2\) ÷ \({ x + 6} \over 5 \) = [ \(5( x + 10) \over 2 ( x + 6)\) ]

Q2) \(x + 7\over 10\) ÷ \( x + 7\over x + 6\) = [ \(x + 6\over 10\) ]

Q3) \(x + 9\over 7\) ÷ \(5 \over {x + 4}\) = [ \(x^2 + 13 x + 36\over 35\) ]

Q3) \(x + 10\over 9\) ÷ \({ x + 3} \over 2 \) = [ \(2( x + 10) \over 9 ( x + 3)\) ]

Q3) \(x + 8\over 5\) x \(x + 2\over x + 8\) = [ \(x + 2\over 5\) ]

Q4) \(x + 7\over 6\) x \(x + 7\over 7\) = [ \(x^2 + 14 x + 49\over 42\) ]

Q4) \(x + 5\over 2\) x \(7 \over{ x + 8}\) = [ \(7( x + 5) \over 2 ( x + 8)\) ]

Q4) \(x + 5\over 4\) x \(x + 10\over x + 5\) = [ \(x + 10\over 4\) ]

Q5) \(x + 2\over 4\) ÷ \(7 \over {x + 9}\) = [ \(x^2 + 11x + 18\over 28\) ]

Q5) \(x + 6\over 7\) ÷ \({ x + 8} \over 10 \) = [ \(10( x + 6) \over 7 ( x + 8)\) ]

Q5) \(x + 1\over 8\) x \(x + 8\over x + 1\) = [ \(x + 8\over 8\) ]

Q6) \(x + 9\over 8\) x \(x + 10\over 2\) = [ \(x^2 + 19 x + 90\over 16\) ]

Q6) \(x + 2\over 10\) ÷ \({ x + 7} \over 7 \) = [ \(7( x + 2) \over 10 ( x + 7)\) ]

Q6) \(x + 7\over 4\) ÷ \( x + 7\over x + 8\) = [ \(x + 8\over 4\) ]

Q7) \(x + 9\over 7\) x \(x + 8\over 5\) = [ \(x^2 + 17 x + 72\over 35\) ]

Q7) \(x + 8\over 8\) x \(9 \over{ x + 1}\) = [ \(9( x + 8) \over 8 ( x + 1)\) ]

Q7) \(x + 1\over 2\) ÷ \( x + 1\over x + 2\) = [ \(x + 2\over 2\) ]

Q8) \(x + 5\over 6\) x \(x + 1\over 6\) = [ \(x^2 + 6 x + 5\over 36\) ]

Q8) \(x + 5\over 1\) x \(1 \over{ x + 7}\) = [ \(1( x + 5) \over( x + 7)\) ]

Q8) \(x + 9\over 5\) x \(x + 2\over x + 9\) = [ \(x + 2\over 5\) ]

Q9) \(x + 6\over 4\) ÷ \(2 \over {x + 1}\) = [ \(x^2 + 7 x + 6\over 8\) ]

Q9) \(x + 2\over 9\) ÷ \({ x + 6} \over 10 \) = [ \(10( x + 2) \over 9 ( x + 6)\) ]

Q9) \(x + 2\over 4\) x \(x + 5\over x + 2\) = [ \(x + 5\over 4\) ]

Q10) \(x + 8\over 8\) x \(x + 8\over 7\) = [ \(x^2 + 16 x + 64\over 56\) ]

Q10) \(x + 2\over 8\) x \(3 \over{ x + 9}\) = [ \(3( x + 2) \over 8 ( x + 9)\) ]

Q10) \(x + 1\over 7\) x \(x + 7\over x + 1\) = [ \(x + 7\over 7\) ]