Q1) \({x^2 +3x-10}\over{x-2}\) = [ \(x+5\) ]
Q1) \({x-4}\over{x^2 -16}\) = [ \(1\over{x+4}\) ]
Q1) \({5x^2 -27x+10}\over{x-5}\) = [ \(5x-2\) ]
Q2) \({x^2 -2x-8}\over{x-4}\) = [ \(x+2\) ]
Q2) \({x^2 -16}\over{x-4}\) = [ \(x+4\) ]
Q2) \({4x^2 +14x-30}\over{x+5}\) = [ \(4x-6\) ]
Q3) \({x-4\over{x^2 -8x+16}}\) = [ \(1\over{x-4}\) ]
Q3) \({x-2}\over{x^2 -4}\) = [ \(1\over{x+2}\) ]
Q3) \({3x^2 +3x-6}\over{x+2}\) = [ \(3x-3\) ]
Q4) \({x+2\over{x^2 +4x+4}}\) = [ \(1\over{x+2}\) ]
Q4) \({x+4}\over{x^2 -16}\) = [ \(1\over{x-4}\) ]
Q4) \({4x^2 +11x-20}\over{x+4}\) = [ \(4x-5\) ]
Q5) \({x^2 -16}\over{x+4}\) = [ \(x-4\) ]
Q5) \({x^2 -9}\over{x-3}\) = [ \(x+3\) ]
Q5) \({2x^2 -4x-30}\over{x-5}\) = [ \(2x+6\) ]
Q6) \({x+3\over{x^2 +5x+6}}\) = [ \(1\over{x+2}\) ]
Q6) \({x+7}\over{x^2 -49}\) = [ \(1\over{x-7}\) ]
Q6) \({5x^2 -7x-6}\over{x-2}\) = [ \(5x+3\) ]
Q7) \({x+3\over{x^2 +x-6}}\) = [ \(1\over{x-2}\) ]
Q7) \({x^2 -9}\over{x+3}\) = [ \(x-3\) ]
Q7) \({5x^2 -32x+12}\over{x-6}\) = [ \(5x-2\) ]
Q8) \({x^2 +16x+60}\over{x+6}\) = [ \(x+10\) ]
Q8) \({x^2 -64}\over{x-8}\) = [ \(x+8\) ]
Q8) \({5x^2 -35x+30}\over{x-6}\) = [ \(5x-5\) ]
Q9) \({x^2 +5x+6}\over{x+2}\) = [ \(x+3\) ]
Q9) \({x+6}\over{x^2 -36}\) = [ \(1\over{x-6}\) ]
Q9) \({3x^2 +21x+18}\over{x+6}\) = [ \(3x+3\) ]
Q10) \({x^2 -13x+42}\over{x-7}\) = [ \(x-6\) ]
Q10) \({x^2 -49}\over{x+7}\) = [ \(x-7\) ]
Q10) \({4x^2 -19x+12}\over{x-4}\) = [ \(4x-3\) ]