Q1) Expand 6(w + 6) = [ 6w + 36]
Q1) Factorise the following;
27y + 12 = [ 3(9y + 4)]
Q1) Expand and simplify
\((w + 3)(w + 4)\equiv\) [ \(w^2 + 7w + 12\)]
Q2) Expand 5(y + 7) = [ 5y + 35]
Q2) Factorise the following;
90w -40 = [ 10(9w -4)]
Q2) Expand and simplify
\((y + 3)(y + 5)\equiv\) [ \(y^2 + 8y + 15\)]
Q3) Expand 8(x + 6) = [ 8x + 48]
Q3) Factorise the following;
40x + 32 = [ 8(5x + 4)]
Q3) Expand and simplify
\((w + 1)(w + 4)\equiv\) [ \(w^2 + 5w + 4\)]
Q4) Expand 4(x + 4) = [ 4x + 16]
Q4) Factorise the following;
63w -81 = [ 9(7w -9)]
Q4) Expand and simplify
\((x + 2)(x + 2)\equiv\) [ \(x^2 + 4x + 4\)]
Q5) Expand 5(z + 8) = [ 5z + 40]
Q5) Factorise the following;
50z + 80 = [ 10(5z + 8)]
Q5) Expand and simplify
\((w + 5)(w + 5)\equiv\) [ \(w^2 + 10w + 25\)]
Q6) Expand 3(y + 5) = [ 3y + 15]
Q6) Factorise the following;
27y -45 = [ 9(3y -5)]
Q6) Expand and simplify
\((w + 4)(w + 5)\equiv\) [ \(w^2 + 9w + 20\)]
Q7) Expand 7(x + 6) = [ 7x + 42]
Q7) Factorise the following;
54x -24 = [ 6(9x -4)]
Q7) Expand and simplify
\((w + 3)(w + 4)\equiv\) [ \(w^2 + 7w + 12\)]
Q8) Expand 6(x + 8) = [ 6x + 48]
Q8) Factorise the following;
49x -70 = [ 7(7x -10)]
Q8) Expand and simplify
\((z + 2)(z + 2)\equiv\) [ \(z^2 + 4z + 4\)]
Q9) Expand 10(x + 6) = [ 10x + 60]
Q9) Factorise the following;
50x + 40 = [ 10(5x + 4)]
Q9) Expand and simplify
\((y + 1)(y + 4)\equiv\) [ \(y^2 + 5y + 4\)]
Q10) Expand 3(x + 6) = [ 3x + 18]
Q10) Factorise the following;
56y -49 = [ 7(8y -7)]
Q10) Expand and simplify
\((z + 2)(z + 5)\equiv\) [ \(z^2 + 7z + 10\)]