Mr Daniels Maths
Fraction Addition

Set 1

Set 2

Set 3

Q1) \(\frac{4}{9}\) + \(\frac{2}{9}\) = [ \(\frac{2}{3}\)]

Q1) \(\frac{2}{9}\) + \(\frac{4}{9}\) = [ \(\frac{2}{3}\)]

Q1) 2\(\frac{2}{3}\) + 2\(\frac{1}{3}\) = [ 5]

Q2) \(\frac{3}{5}\) + \(\frac{1}{5}\) = [ \(\frac{4}{5}\)]

Q2) \(\frac{1}{5}\) + \(\frac{1}{4}\) = [ \(\frac{9}{20}\)]

Q2) 1\(\frac{3}{4}\) + \(\frac{3}{10}\) = [ 2\(\frac{1}{20}\)]

Q3) \(\frac{2}{5}\) + \(\frac{1}{2}\) = [ \(\frac{9}{10}\)]

Q3) \(\frac{4}{7}\) + \(\frac{1}{5}\) = [ \(\frac{27}{35}\)]

Q3) \(\frac{3}{4}\) + \(\frac{2}{9}\) +3\(\frac{1}{2}\)= [ 4\(\frac{17}{36}\)]

Q4) \(\frac{1}{5}\) + \(\frac{5}{7}\) = [ \(\frac{32}{35}\)]

Q4) \(\frac{2}{9}\) + \(\frac{1}{2}\) = [ \(\frac{13}{18}\)]

Q4) \(\frac{3}{7}\) + \(\frac{1}{2}\) +3\(\frac{1}{2}\)= [ 4\(\frac{3}{7}\)]

Q5) \(\frac{5}{8}\) + \(\frac{1}{3}\) = [ \(\frac{23}{24}\)]

Q5) \(\frac{3}{10}\) + \(\frac{1}{3}\) = [ \(\frac{19}{30}\)]

Q5) 2\(\frac{2}{3}\) + \(\frac{1}{9}\) = [ 2\(\frac{7}{9}\)]

Q6) \(\frac{1}{3}\) + \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]

Q6) \(\frac{3}{10}\) + \(\frac{2}{7}\) = [ \(\frac{41}{70}\)]

Q6) \(\frac{1}{4}\) + \(\frac{2}{3}\) +2\(\frac{1}{2}\)= [ 3\(\frac{5}{12}\)]

Q7) \(\frac{2}{5}\) + \(\frac{1}{3}\) = [ \(\frac{11}{15}\)]

Q7) \(\frac{3}{8}\) + \(\frac{3}{10}\) = [ \(\frac{27}{40}\)]

Q7) \(\frac{3}{4}\) + \(\frac{1}{3}\) +1\(\frac{1}{3}\)= [ 2\(\frac{5}{12}\)]

Q8) \(\frac{1}{3}\) + \(\frac{5}{9}\) = [ \(\frac{8}{9}\)]

Q8) \(\frac{1}{5}\) + \(\frac{3}{7}\) = [ \(\frac{22}{35}\)]

Q8) 1\(\frac{1}{9}\) + 1\(\frac{1}{6}\) = [ 2\(\frac{5}{18}\)]

Q9) \(\frac{4}{9}\) + \(\frac{3}{8}\) = [ \(\frac{59}{72}\)]

Q9) \(\frac{4}{7}\) + \(\frac{1}{4}\) = [ \(\frac{23}{28}\)]

Q9) \(\frac{1}{2}\) + \(\frac{4}{5}\) +2= [ 3\(\frac{3}{10}\)]

Q10) \(\frac{3}{10}\) + \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]

Q10) \(\frac{1}{5}\) + \(\frac{2}{3}\) = [ \(\frac{13}{15}\)]

Q10) 1\(\frac{2}{7}\) + 1\(\frac{3}{5}\) = [ 2\(\frac{31}{35}\)]