Q1) \(\frac{2}{3}\) + \(\frac{2}{9}\) = \({ ...+ ...}\over9\) = \({...}\over{...}\) [ \(\frac{8}{9}\) 9]
Q1) \(\frac{1}{2}\) + \(\frac{3}{8}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{8}\)]
Q1) \(\frac{3}{8}\) + \(\frac{3}{5}\) = [ \(\frac{39}{40}\)]
Q2) \(\frac{2}{7}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{41}{70}\) 70]
Q2) \(\frac{1}{3}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{6}\)]
Q2) \(\frac{4}{9}\) + \(\frac{1}{2}\) = [ \(\frac{17}{18}\)]
Q3) \(\frac{2}{7}\) + \(\frac{7}{10}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{69}{70}\) 70]
Q3) \(\frac{2}{5}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]
Q3) \(\frac{3}{4}\) + \(\frac{1}{5}\) = [ \(\frac{19}{20}\)]
Q4) \(\frac{5}{8}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over40\) = \({...}\over{...}\) [ \(\frac{37}{40}\) 40]
Q4) \(\frac{3}{10}\) + \(\frac{3}{7}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{51}{70}\)]
Q4) \(\frac{1}{5}\) + \(\frac{2}{3}\) = [ \(\frac{13}{15}\)]
Q5) \(\frac{2}{9}\) + \(\frac{5}{8}\) = \({ ...+ ...}\over72\) = \({...}\over{...}\) [ \(\frac{61}{72}\) 72]
Q5) \(\frac{1}{3}\) + \(\frac{3}{5}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{14}{15}\)]
Q5) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]
Q6) \(\frac{3}{10}\) + \(\frac{3}{8}\) = \({ ...+ ...}\over40\) = \({...}\over{...}\) [ \(\frac{27}{40}\) 40]
Q6) \(\frac{1}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{12}\)]
Q6) \(\frac{1}{4}\) + \(\frac{5}{9}\) = [ \(\frac{29}{36}\)]
Q7) \(\frac{2}{9}\) + \(\frac{2}{5}\) = \({ ...+ ...}\over45\) = \({...}\over{...}\) [ \(\frac{28}{45}\) 45]
Q7) \(\frac{1}{3}\) + \(\frac{3}{8}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{17}{24}\)]
Q7) \(\frac{1}{2}\) + \(\frac{1}{3}\) = [ \(\frac{5}{6}\)]
Q8) \(\frac{2}{5}\) + \(\frac{3}{7}\) = \({ ...+ ...}\over35\) = \({...}\over{...}\) [ \(\frac{29}{35}\) 35]
Q8) \(\frac{2}{7}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{14}\)]
Q8) \(\frac{3}{5}\) + \(\frac{1}{3}\) = [ \(\frac{14}{15}\)]
Q9) \(\frac{3}{7}\) + \(\frac{3}{8}\) = \({ ...+ ...}\over56\) = \({...}\over{...}\) [ \(\frac{45}{56}\) 56]
Q9) \(\frac{2}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{12}\)]
Q9) \(\frac{3}{5}\) + \(\frac{1}{4}\) = [ \(\frac{17}{20}\)]
Q10) \(\frac{2}{5}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over35\) = \({...}\over{...}\) [ \(\frac{24}{35}\) 35]
Q10) \(\frac{3}{10}\) + \(\frac{3}{5}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]
Q10) \(\frac{1}{5}\) + \(\frac{5}{9}\) = [ \(\frac{34}{45}\)]