Mr Daniels Maths
Fraction Addition Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{2}{3}\) + \(\frac{2}{9}\) = \({ ...+ ...}\over9\) = \({...}\over{...}\) [ \(\frac{8}{9}\) 9]

Q1) \(\frac{1}{2}\) + \(\frac{3}{8}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{8}\)]

Q1) \(\frac{3}{8}\) + \(\frac{3}{5}\) = [ \(\frac{39}{40}\)]

Q2) \(\frac{2}{7}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{41}{70}\) 70]

Q2) \(\frac{1}{3}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{6}\)]

Q2) \(\frac{4}{9}\) + \(\frac{1}{2}\) = [ \(\frac{17}{18}\)]

Q3) \(\frac{2}{7}\) + \(\frac{7}{10}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{69}{70}\) 70]

Q3) \(\frac{2}{5}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]

Q3) \(\frac{3}{4}\) + \(\frac{1}{5}\) = [ \(\frac{19}{20}\)]

Q4) \(\frac{5}{8}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over40\) = \({...}\over{...}\) [ \(\frac{37}{40}\) 40]

Q4) \(\frac{3}{10}\) + \(\frac{3}{7}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{51}{70}\)]

Q4) \(\frac{1}{5}\) + \(\frac{2}{3}\) = [ \(\frac{13}{15}\)]

Q5) \(\frac{2}{9}\) + \(\frac{5}{8}\) = \({ ...+ ...}\over72\) = \({...}\over{...}\) [ \(\frac{61}{72}\) 72]

Q5) \(\frac{1}{3}\) + \(\frac{3}{5}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{14}{15}\)]

Q5) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]

Q6) \(\frac{3}{10}\) + \(\frac{3}{8}\) = \({ ...+ ...}\over40\) = \({...}\over{...}\) [ \(\frac{27}{40}\) 40]

Q6) \(\frac{1}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{12}\)]

Q6) \(\frac{1}{4}\) + \(\frac{5}{9}\) = [ \(\frac{29}{36}\)]

Q7) \(\frac{2}{9}\) + \(\frac{2}{5}\) = \({ ...+ ...}\over45\) = \({...}\over{...}\) [ \(\frac{28}{45}\) 45]

Q7) \(\frac{1}{3}\) + \(\frac{3}{8}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{17}{24}\)]

Q7) \(\frac{1}{2}\) + \(\frac{1}{3}\) = [ \(\frac{5}{6}\)]

Q8) \(\frac{2}{5}\) + \(\frac{3}{7}\) = \({ ...+ ...}\over35\) = \({...}\over{...}\) [ \(\frac{29}{35}\) 35]

Q8) \(\frac{2}{7}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{14}\)]

Q8) \(\frac{3}{5}\) + \(\frac{1}{3}\) = [ \(\frac{14}{15}\)]

Q9) \(\frac{3}{7}\) + \(\frac{3}{8}\) = \({ ...+ ...}\over56\) = \({...}\over{...}\) [ \(\frac{45}{56}\) 56]

Q9) \(\frac{2}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{12}\)]

Q9) \(\frac{3}{5}\) + \(\frac{1}{4}\) = [ \(\frac{17}{20}\)]

Q10) \(\frac{2}{5}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over35\) = \({...}\over{...}\) [ \(\frac{24}{35}\) 35]

Q10) \(\frac{3}{10}\) + \(\frac{3}{5}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]

Q10) \(\frac{1}{5}\) + \(\frac{5}{9}\) = [ \(\frac{34}{45}\)]