Mr Daniels Maths
Fraction Addition and Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{2}{7}\) + \(\frac{3}{5}\) = [ \(\frac{31}{35}\)]

Q1) \(\frac{3}{4}\) - \(\frac{1}{3}\) = [ \(\frac{5}{12}\)]

Q1) 1\(\frac{3}{5}\) + \(\frac{3}{4}\) = [ 2\(\frac{7}{20}\)]

Q2) \(\frac{1}{3}\) + \(\frac{4}{9}\) = [ \(\frac{7}{9}\)]

Q2) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]

Q2) 1\(\frac{1}{2}\) + \(\frac{1}{4}\) = [ 1\(\frac{3}{4}\)]

Q3) \(\frac{7}{10}\) + \(\frac{2}{7}\) = [ \(\frac{69}{70}\)]

Q3) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]

Q3) 2\(\frac{1}{2}\) + \(\frac{1}{2}\) = [ 3]

Q4) \(\frac{2}{7}\) + \(\frac{1}{4}\) = [ \(\frac{15}{28}\)]

Q4) \(\frac{2}{3}\) - \(\frac{7}{16}\) = [ \(\frac{11}{48}\)]

Q4) 3\(\frac{1}{2}\) + \(\frac{6}{7}\) = [ 4\(\frac{5}{14}\)]

Q5) \(\frac{1}{5}\) + \(\frac{5}{7}\) = [ \(\frac{32}{35}\)]

Q5) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q5) 2\(\frac{1}{4}\) + \(\frac{9}{10}\) = [ 3\(\frac{3}{20}\)]

Q6) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]

Q6) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]

Q6) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]

Q7) \(\frac{5}{8}\) + \(\frac{1}{4}\) = [ \(\frac{7}{8}\)]

Q7) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]

Q7) 1\(\frac{1}{2}\) + \(\frac{3}{5}\) = [ 2\(\frac{1}{10}\)]

Q8) \(\frac{3}{5}\) + \(\frac{1}{3}\) = [ \(\frac{14}{15}\)]

Q8) \(\frac{2}{3}\) - \(\frac{5}{11}\) = [ \(\frac{7}{33}\)]

Q8) 2\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{1}{6}\)]

Q9) \(\frac{1}{3}\) + \(\frac{5}{8}\) = [ \(\frac{23}{24}\)]

Q9) \(\frac{2}{3}\) - \(\frac{5}{8}\) = [ \(\frac{1}{24}\)]

Q9) 1\(\frac{1}{2}\) + \(\frac{3}{7}\) = [ 1\(\frac{13}{14}\)]

Q10) \(\frac{2}{9}\) + \(\frac{2}{9}\) = [ \(\frac{4}{9}\)]

Q10) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q10) 1\(\frac{1}{3}\) + \(\frac{2}{3}\) = [ 2]