Q1) \(\frac{2}{7}\) + \(\frac{3}{5}\) = [ \(\frac{31}{35}\)]
Q1) \(\frac{3}{4}\) - \(\frac{1}{3}\) = [ \(\frac{5}{12}\)]
Q1) 1\(\frac{3}{5}\) + \(\frac{3}{4}\) = [ 2\(\frac{7}{20}\)]
Q2) \(\frac{1}{3}\) + \(\frac{4}{9}\) = [ \(\frac{7}{9}\)]
Q2) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]
Q2) 1\(\frac{1}{2}\) + \(\frac{1}{4}\) = [ 1\(\frac{3}{4}\)]
Q3) \(\frac{7}{10}\) + \(\frac{2}{7}\) = [ \(\frac{69}{70}\)]
Q3) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q3) 2\(\frac{1}{2}\) + \(\frac{1}{2}\) = [ 3]
Q4) \(\frac{2}{7}\) + \(\frac{1}{4}\) = [ \(\frac{15}{28}\)]
Q4) \(\frac{2}{3}\) - \(\frac{7}{16}\) = [ \(\frac{11}{48}\)]
Q4) 3\(\frac{1}{2}\) + \(\frac{6}{7}\) = [ 4\(\frac{5}{14}\)]
Q5) \(\frac{1}{5}\) + \(\frac{5}{7}\) = [ \(\frac{32}{35}\)]
Q5) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q5) 2\(\frac{1}{4}\) + \(\frac{9}{10}\) = [ 3\(\frac{3}{20}\)]
Q6) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]
Q6) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]
Q6) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]
Q7) \(\frac{5}{8}\) + \(\frac{1}{4}\) = [ \(\frac{7}{8}\)]
Q7) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]
Q7) 1\(\frac{1}{2}\) + \(\frac{3}{5}\) = [ 2\(\frac{1}{10}\)]
Q8) \(\frac{3}{5}\) + \(\frac{1}{3}\) = [ \(\frac{14}{15}\)]
Q8) \(\frac{2}{3}\) - \(\frac{5}{11}\) = [ \(\frac{7}{33}\)]
Q8) 2\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{1}{6}\)]
Q9) \(\frac{1}{3}\) + \(\frac{5}{8}\) = [ \(\frac{23}{24}\)]
Q9) \(\frac{2}{3}\) - \(\frac{5}{8}\) = [ \(\frac{1}{24}\)]
Q9) 1\(\frac{1}{2}\) + \(\frac{3}{7}\) = [ 1\(\frac{13}{14}\)]
Q10) \(\frac{2}{9}\) + \(\frac{2}{9}\) = [ \(\frac{4}{9}\)]
Q10) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q10) 1\(\frac{1}{3}\) + \(\frac{2}{3}\) = [ 2]