Q1) \(\frac{5}{8}\) \(\div\) \(\frac{2}{7}\) = [ 2\(\frac{3}{16}\)]
Q1) \(\frac{4}{19}\) \(\div\) \(\frac{9}{20}\) = [ \(\frac{80}{171}\)]
Q1) 1\(\frac{1}{8}\) \(\div\) 1\(\frac{1}{2}\) = [ \(\frac{3}{4}\)]
Q2) \(\frac{1}{3}\) \(\div\) \(\frac{3}{5}\) = [ \(\frac{5}{9}\)]
Q2) \(\frac{1}{7}\) \(\div\) \(\frac{9}{19}\) = [ \(\frac{19}{63}\)]
Q2) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{1}{9}\) = [ 1\(\frac{1}{8}\)]
Q3) \(\frac{2}{5}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]
Q3) \(\frac{7}{9}\) \(\div\) \(\frac{4}{9}\) = [ 1\(\frac{3}{4}\)]
Q3) 1\(\frac{3}{4}\) \(\div\) 1\(\frac{1}{7}\) = [ 1\(\frac{17}{32}\)]
Q4) \(\frac{8}{9}\) \(\div\) \(\frac{2}{9}\) = [ 4]
Q4) \(\frac{8}{13}\) \(\div\) \(\frac{2}{7}\) = [ 2\(\frac{2}{13}\)]
Q4) 4\(\frac{1}{2}\) \(\div\) 1\(\frac{2}{3}\) = [ 2\(\frac{7}{10}\)]
Q5) \(\frac{7}{8}\) \(\div\) \(\frac{6}{7}\) = [ 1\(\frac{1}{48}\)]
Q5) \(\frac{7}{10}\) \(\div\) \(\frac{3}{11}\) = [ 2\(\frac{17}{30}\)]
Q5) 1\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{4}\) = [ 1\(\frac{1}{5}\)]
Q6) \(\frac{7}{8}\) \(\div\) \(\frac{3}{4}\) = [ 1\(\frac{1}{6}\)]
Q6) \(\frac{5}{19}\) \(\div\) \(\frac{5}{19}\) = [ 1]
Q6) 1\(\frac{1}{7}\) \(\div\) 1\(\frac{2}{5}\) = [ \(\frac{40}{49}\)]
Q7) \(\frac{5}{7}\) \(\div\) \(\frac{1}{4}\) = [ 2\(\frac{6}{7}\)]
Q7) \(\frac{3}{5}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{9}{10}\)]
Q7) 1\(\frac{1}{2}\) \(\div\) 1\(\frac{3}{5}\) = [ \(\frac{15}{16}\)]
Q8) \(\frac{3}{7}\) \(\div\) \(\frac{3}{5}\) = [ \(\frac{5}{7}\)]
Q8) \(\frac{1}{5}\) \(\div\) \(\frac{1}{5}\) = [ 1]
Q8) 1\(\frac{3}{5}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{3}{5}\)]
Q9) \(\frac{1}{2}\) \(\div\) \(\frac{1}{2}\) = [ 1]
Q9) \(\frac{1}{2}\) \(\div\) \(\frac{2}{7}\) = [ 1\(\frac{3}{4}\)]
Q9) 1\(\frac{1}{6}\) \(\div\) 2\(\frac{1}{3}\) = [ \(\frac{1}{2}\)]
Q10) \(\frac{5}{6}\) \(\div\) \(\frac{8}{9}\) = [ \(\frac{15}{16}\)]
Q10) \(\frac{3}{5}\) \(\div\) \(\frac{7}{15}\) = [ 1\(\frac{2}{7}\)]
Q10) 2\(\frac{1}{4}\) \(\div\) 1\(\frac{2}{5}\) = [ 1\(\frac{17}{28}\)]