Q1) \(\frac{7}{8}\) - \(\frac{2}{3}\) = [ \(\frac{5}{24}\)]
Q1) \(\frac{3}{5}\) \(\div\) \(\frac{1}{2}\) = [ 1\(\frac{1}{5}\)]
Q1) \(\frac{5}{12}\) + \(\frac{1}{7}\) = [ \(\frac{47}{84}\)]
Q2) \(\frac{1}{2}\) + \(\frac{1}{4}\) = [ \(\frac{3}{4}\)]
Q2) \(\frac{3}{7}\) x \(\frac{4}{5}\) = [ \(\frac{12}{35}\)]
Q2) 2\(\frac{4}{5}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{3}{10}\)]
Q3) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q3) \(\frac{5}{8}\) x \(\frac{2}{5}\) = [ \(\frac{1}{4}\)]
Q3) \(\frac{5}{11}\) + \(\frac{7}{15}\) = [ \(\frac{152}{165}\)]
Q4) \(\frac{1}{2}\) - \(\frac{3}{7}\) = [ \(\frac{1}{14}\)]
Q4) \(\frac{3}{4}\) \(\div\) \(\frac{5}{8}\) = [ 1\(\frac{1}{5}\)]
Q4) 2\(\frac{1}{5}\) - 1\(\frac{2}{5}\) = [ \(\frac{4}{5}\)]
Q5) \(\frac{4}{5}\) - \(\frac{4}{9}\) = [ \(\frac{16}{45}\)]
Q5) \(\frac{6}{7}\) x \(\frac{2}{9}\) = [ \(\frac{4}{21}\)]
Q5) 1\(\frac{2}{5}\) x 1\(\frac{1}{2}\) = [ 2\(\frac{1}{10}\)]
Q6) \(\frac{5}{6}\) - \(\frac{1}{4}\) = [ \(\frac{7}{12}\)]
Q6) \(\frac{7}{8}\) \(\div\) \(\frac{2}{7}\) = [ 3\(\frac{1}{16}\)]
Q6) 1\(\frac{1}{6}\) \(\div\) 3\(\frac{1}{2}\) = [ \(\frac{1}{3}\)]
Q7) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]
Q7) \(\frac{1}{3}\) \(\div\) \(\frac{2}{7}\) = [ 1\(\frac{1}{6}\)]
Q7) \(\frac{5}{8}\) + \(\frac{1}{3}\) = [ \(\frac{23}{24}\)]
Q8) \(\frac{3}{5}\) + \(\frac{1}{5}\) = [ \(\frac{4}{5}\)]
Q8) \(\frac{2}{7}\) \(\div\) \(\frac{3}{5}\) = [ \(\frac{10}{21}\)]
Q8) \(\frac{2}{9}\) + \(\frac{1}{6}\) = [ \(\frac{7}{18}\)]
Q9) \(\frac{1}{5}\) + \(\frac{1}{2}\) = [ \(\frac{7}{10}\)]
Q9) \(\frac{3}{8}\) \(\div\) \(\frac{2}{5}\) = [ \(\frac{15}{16}\)]
Q9) 3\(\frac{1}{4}\) - 1\(\frac{3}{8}\) = [ 1\(\frac{7}{8}\)]
Q10) \(\frac{2}{3}\) - \(\frac{5}{8}\) = [ \(\frac{1}{24}\)]
Q10) \(\frac{2}{3}\) x \(\frac{5}{6}\) = [ \(\frac{5}{9}\)]
Q10) 1\(\frac{4}{5}\) \(\div\) 1\(\frac{1}{3}\) = [ 1\(\frac{7}{20}\)]