Q1) \(\frac{3}{10}\) x \(\frac{2}{3}\) = [ \(\frac{1}{5}\)]
Q1) \(\frac{1}{4}\) x \(\frac{4}{9}\) = [ \(\frac{1}{9}\)]
Q1) 2\(\frac{1}{2}\) x 1\(\frac{1}{8}\) = [ 2\(\frac{13}{16}\)]
Q2) \(\frac{2}{3}\) x \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]
Q2) \(\frac{5}{12}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]
Q2) 1\(\frac{2}{7}\) \(\div\) 1\(\frac{1}{3}\) = [ \(\frac{27}{28}\)]
Q3) \(\frac{2}{5}\) x \(\frac{2}{5}\) = [ \(\frac{4}{25}\)]
Q3) \(\frac{1}{2}\) \(\div\) \(\frac{1}{3}\) = [ 1\(\frac{1}{2}\)]
Q3) 1\(\frac{1}{6}\) x 1\(\frac{1}{4}\) = [ 1\(\frac{11}{24}\)]
Q4) \(\frac{1}{2}\) \(\div\) \(\frac{3}{5}\) = [ \(\frac{5}{6}\)]
Q4) \(\frac{4}{7}\) \(\div\) \(\frac{9}{11}\) = [ \(\frac{44}{63}\)]
Q4) 1\(\frac{2}{3}\) x 2\(\frac{1}{3}\) = [ 3\(\frac{8}{9}\)]
Q5) \(\frac{3}{7}\) \(\div\) \(\frac{3}{10}\) = [ 1\(\frac{3}{7}\)]
Q5) \(\frac{7}{16}\) x \(\frac{3}{19}\) = [ \(\frac{21}{304}\)]
Q5) 1\(\frac{1}{9}\) \(\div\) 1\(\frac{3}{7}\) = [ \(\frac{7}{9}\)]
Q6) \(\frac{7}{8}\) x \(\frac{4}{5}\) = [ \(\frac{7}{10}\)]
Q6) \(\frac{1}{8}\) x \(\frac{4}{15}\) = [ \(\frac{1}{30}\)]
Q6) 1\(\frac{1}{7}\) \(\div\) 1\(\frac{2}{3}\) = [ \(\frac{24}{35}\)]
Q7) \(\frac{1}{5}\) \(\div\) \(\frac{3}{7}\) = [ \(\frac{7}{15}\)]
Q7) \(\frac{5}{19}\) x \(\frac{9}{20}\) = [ \(\frac{9}{76}\)]
Q7) 1\(\frac{1}{4}\) x 3\(\frac{1}{2}\) = [ 4\(\frac{3}{8}\)]
Q8) \(\frac{3}{4}\) x \(\frac{1}{2}\) = [ \(\frac{3}{8}\)]
Q8) \(\frac{2}{5}\) \(\div\) \(\frac{5}{16}\) = [ 1\(\frac{7}{25}\)]
Q8) 1\(\frac{1}{7}\) x 1\(\frac{4}{5}\) = [ 2\(\frac{2}{35}\)]
Q9) \(\frac{4}{9}\) \(\div\) \(\frac{1}{3}\) = [ 1\(\frac{1}{3}\)]
Q9) \(\frac{3}{10}\) x \(\frac{5}{12}\) = [ \(\frac{1}{8}\)]
Q9) 1\(\frac{1}{2}\) \(\div\) 2\(\frac{1}{3}\) = [ \(\frac{9}{14}\)]
Q10) \(\frac{3}{4}\) x \(\frac{7}{9}\) = [ \(\frac{7}{12}\)]
Q10) \(\frac{2}{5}\) x \(\frac{2}{11}\) = [ \(\frac{4}{55}\)]
Q10) 1\(\frac{3}{7}\) x 1\(\frac{1}{4}\) = [ 1\(\frac{11}{14}\)]