Mr Daniels Maths
Fraction Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]

Q1) 1\(\frac{1}{2}\) - \(\frac{3}{4}\) = [ \(\frac{3}{4}\)]

Q1) 3\(\frac{1}{3}\) - 1\(\frac{2}{19}\) = [ 2\(\frac{13}{57}\)]

Q2) \(\frac{3}{4}\) - \(\frac{3}{5}\) = [ \(\frac{3}{20}\)]

Q2) 1\(\frac{1}{2}\) - \(\frac{5}{7}\) = [ \(\frac{11}{14}\)]

Q2) 2\(\frac{1}{3}\) - 2\(\frac{1}{8}\) = [ \(\frac{5}{24}\)]

Q3) \(\frac{5}{6}\) - \(\frac{4}{7}\) = [ \(\frac{11}{42}\)]

Q3) 1\(\frac{1}{3}\) - \(\frac{2}{3}\) = [ \(\frac{2}{3}\)]

Q3) 1\(\frac{9}{14}\) - 1\(\frac{1}{2}\) = [ \(\frac{1}{7}\)]

Q4) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]

Q4) 1\(\frac{1}{4}\) - \(\frac{3}{10}\) = [ \(\frac{19}{20}\)]

Q4) 4\(\frac{1}{3}\) - 1\(\frac{9}{11}\) = [ 2\(\frac{17}{33}\)]

Q5) \(\frac{4}{5}\) - \(\frac{3}{4}\) = [ \(\frac{1}{20}\)]

Q5) 1\(\frac{2}{3}\) - \(\frac{3}{4}\) = [ \(\frac{11}{12}\)]

Q5) 5\(\frac{1}{2}\) - 1\(\frac{3}{4}\) = [ 3\(\frac{3}{4}\)]

Q6) \(\frac{8}{9}\) - \(\frac{2}{5}\) = [ \(\frac{22}{45}\)]

Q6) 1\(\frac{1}{2}\) - \(\frac{3}{4}\) = [ \(\frac{3}{4}\)]

Q6) 3\(\frac{1}{3}\) - 1\(\frac{6}{7}\) = [ 1\(\frac{10}{21}\)]

Q7) \(\frac{1}{2}\) - \(\frac{1}{5}\) = [ \(\frac{3}{10}\)]

Q7) 1\(\frac{2}{3}\) - \(\frac{3}{4}\) = [ \(\frac{11}{12}\)]

Q7) 3\(\frac{1}{2}\) - 1\(\frac{3}{4}\) = [ 1\(\frac{3}{4}\)]

Q8) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]

Q8) 1\(\frac{1}{7}\) - \(\frac{2}{5}\) = [ \(\frac{26}{35}\)]

Q8) 3\(\frac{1}{4}\) - 1\(\frac{1}{7}\) = [ 2\(\frac{3}{28}\)]

Q9) \(\frac{3}{5}\) - \(\frac{2}{5}\) = [ \(\frac{1}{5}\)]

Q9) 1\(\frac{1}{6}\) - \(\frac{4}{5}\) = [ \(\frac{11}{30}\)]

Q9) 3\(\frac{1}{3}\) - 1\(\frac{3}{4}\) = [ 1\(\frac{7}{12}\)]

Q10) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q10) 1\(\frac{1}{6}\) - \(\frac{2}{3}\) = [ \(\frac{1}{2}\)]

Q10) 2\(\frac{1}{3}\) - 1\(\frac{5}{17}\) = [ 1\(\frac{2}{51}\)]