Q1) \(\frac{3}{8}\) - \(\frac{2}{9}\) = \({... - ...}\over72\) = \({...}\over{...}\) [ \(\frac{11}{72}\)]
Q1) \(\frac{7}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{31}{63}\)]
Q1) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]
Q2) \(\frac{7}{8}\) - \(\frac{7}{9}\) = \({... - ...}\over72\) = \({...}\over{...}\) [ \(\frac{7}{72}\)]
Q2) \(\frac{7}{10}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{40}\)]
Q2) \(\frac{4}{5}\) - \(\frac{7}{9}\) = [ \(\frac{1}{45}\)]
Q3) \(\frac{5}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{17}{63}\)]
Q3) \(\frac{2}{3}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{24}\)]
Q3) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q4) \(\frac{7}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{31}{63}\)]
Q4) \(\frac{7}{9}\) - \(\frac{3}{10}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{43}{90}\)]
Q4) \(\frac{1}{2}\) - \(\frac{1}{4}\) = [ \(\frac{1}{4}\)]
Q5) \(\frac{9}{10}\) - \(\frac{5}{8}\) = \({... - ...}\over40\) = \({...}\over{...}\) [ \(\frac{11}{40}\)]
Q5) \(\frac{3}{5}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{10}\)]
Q5) \(\frac{4}{5}\) - \(\frac{2}{5}\) = [ \(\frac{2}{5}\)]
Q6) \(\frac{3}{5}\) - \(\frac{4}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{7}{45}\)]
Q6) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]
Q6) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]
Q7) \(\frac{7}{9}\) - \(\frac{4}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{13}{63}\)]
Q7) \(\frac{2}{3}\) - \(\frac{1}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{15}\)]
Q7) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q8) \(\frac{5}{8}\) - \(\frac{3}{5}\) = \({... - ...}\over40\) = \({...}\over{...}\) [ \(\frac{1}{40}\)]
Q8) \(\frac{3}{7}\) - \(\frac{2}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{35}\)]
Q8) \(\frac{3}{7}\) - \(\frac{1}{3}\) = [ \(\frac{2}{21}\)]
Q9) \(\frac{6}{7}\) - \(\frac{2}{5}\) = \({... - ...}\over35\) = \({...}\over{...}\) [ \(\frac{16}{35}\)]
Q9) \(\frac{8}{9}\) - \(\frac{4}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{45}\)]
Q9) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]
Q10) \(\frac{8}{9}\) - \(\frac{4}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{20}{63}\)]
Q10) \(\frac{1}{2}\) - \(\frac{2}{9}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{18}\)]
Q10) \(\frac{5}{8}\) - \(\frac{1}{2}\) = [ \(\frac{1}{8}\)]