Mr Daniels Maths
Fraction Subtraction Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{3}{8}\) - \(\frac{2}{9}\) = \({... - ...}\over72\) = \({...}\over{...}\) [ \(\frac{11}{72}\)]

Q1) \(\frac{7}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{31}{63}\)]

Q1) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q2) \(\frac{7}{8}\) - \(\frac{7}{9}\) = \({... - ...}\over72\) = \({...}\over{...}\) [ \(\frac{7}{72}\)]

Q2) \(\frac{7}{10}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{40}\)]

Q2) \(\frac{4}{5}\) - \(\frac{7}{9}\) = [ \(\frac{1}{45}\)]

Q3) \(\frac{5}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{17}{63}\)]

Q3) \(\frac{2}{3}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{24}\)]

Q3) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]

Q4) \(\frac{7}{9}\) - \(\frac{2}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{31}{63}\)]

Q4) \(\frac{7}{9}\) - \(\frac{3}{10}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{43}{90}\)]

Q4) \(\frac{1}{2}\) - \(\frac{1}{4}\) = [ \(\frac{1}{4}\)]

Q5) \(\frac{9}{10}\) - \(\frac{5}{8}\) = \({... - ...}\over40\) = \({...}\over{...}\) [ \(\frac{11}{40}\)]

Q5) \(\frac{3}{5}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{10}\)]

Q5) \(\frac{4}{5}\) - \(\frac{2}{5}\) = [ \(\frac{2}{5}\)]

Q6) \(\frac{3}{5}\) - \(\frac{4}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{7}{45}\)]

Q6) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]

Q6) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q7) \(\frac{7}{9}\) - \(\frac{4}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{13}{63}\)]

Q7) \(\frac{2}{3}\) - \(\frac{1}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{15}\)]

Q7) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q8) \(\frac{5}{8}\) - \(\frac{3}{5}\) = \({... - ...}\over40\) = \({...}\over{...}\) [ \(\frac{1}{40}\)]

Q8) \(\frac{3}{7}\) - \(\frac{2}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{35}\)]

Q8) \(\frac{3}{7}\) - \(\frac{1}{3}\) = [ \(\frac{2}{21}\)]

Q9) \(\frac{6}{7}\) - \(\frac{2}{5}\) = \({... - ...}\over35\) = \({...}\over{...}\) [ \(\frac{16}{35}\)]

Q9) \(\frac{8}{9}\) - \(\frac{4}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{45}\)]

Q9) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]

Q10) \(\frac{8}{9}\) - \(\frac{4}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{20}{63}\)]

Q10) \(\frac{1}{2}\) - \(\frac{2}{9}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{18}\)]

Q10) \(\frac{5}{8}\) - \(\frac{1}{2}\) = [ \(\frac{1}{8}\)]