Mr Daniels Maths
Functions Inverse

Set 1

Set 2

Set 3

Q1) h(x) =x -8. Find h'(x). [ h'(x) = x +8]

Q1) h(x) = \(x\over 4\) -3. Find h'(x). [ \(h'(x) \)= \(4(x +3)\)]

Q1) f(x) =\(x^ 2 -6\). Find f'(x). [ f'(x)= \( \sqrt[2]{x +6} \)]

Q2) \(f(x) =9{x}. \) Find \(f'(x).\) [ \(f'(x)\) = \(x\over9\)]

Q2) f(x) = 3 x + 7. Find f'(x). [ \(f'(x) \)= \({x -7}\over3\)]

Q2) f(x) =\(x^ 2 + 2\). Find f'(x). [ f'(x)= \( \sqrt[2]{x -2} \)]

Q3) f(x) =x -2. Find f'(x). [ f'(x) = x +2]

Q3) h(x) = \(x\over 10\) + 9. Find h'(x). [ \(h'(x) \)= \(10(x -9)\)]

Q3) g(x) =\( 5 x^ 3 -4\). Find g'(x). [ g'(x)= \( \sqrt[3]{{x +4}\over 5} \)]

Q4) g(x) =x -9. Find g'(x). [ g'(x) = x +9]

Q4) h(x) = \(x\over 10\) + 8. Find h'(x). [ \(h'(x) \)= \(10(x -8)\)]

Q4) f(x) =\(x^ 2 -5\). Find f'(x). [ f'(x)= \( \sqrt[2]{x +5} \)]

Q5) h(x) =x + 9. Find h'(x). [ h'(x) = x -9]

Q5) g(x) = 8 x -8. Find g'(x). [ \(g'(x) \)= \({x +8}\over8\)]

Q5) h(x) =\(x^ 3 -7\). Find h'(x). [ h'(x)= \( \sqrt[3]{x +7} \)]

Q6) h(x) =x -3. Find h'(x). [ h'(x) = x +3]

Q6) h(x) = 5 x -10. Find h'(x). [ \(h'(x) \)= \({x +10}\over5\)]

Q6) f(x) =\(x^ 2 + 7\). Find f'(x). [ f'(x)= \( \sqrt[2]{x -7} \)]

Q7) h(x) =x -7. Find h'(x). [ h'(x) = x +7]

Q7) h(x) = \(x\over 8\) -8. Find h'(x). [ \(h'(x) \)= \(8(x +8)\)]

Q7) h(x) =\( 2 x^ 3 -10\). Find h'(x). [ h'(x)= \( \sqrt[3]{{x +10}\over 2} \)]

Q8) \(h(x) =4{x}. \) Find \(h'(x).\) [ \(h'(x)\) = \(x\over4\)]

Q8) h(x) = 7 x + 5. Find h'(x). [ \(h'(x) \)= \({x -5}\over7\)]

Q8) g(x) =\(x^ 2 -10\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +10} \)]

Q9) h(x) =x -4. Find h'(x). [ h'(x) = x +4]

Q9) h(x) = \(x\over 6\) -3. Find h'(x). [ \(h'(x) \)= \(6(x +3)\)]

Q9) g(x) =\(x^ 2 -4\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +4} \)]

Q10) h(x) =x + 3. Find h'(x). [ h'(x) = x -3]

Q10) g(x) = \(x\over 10\) -10. Find g'(x). [ \(g'(x) \)= \(10(x +10)\)]

Q10) g(x) =\(x^ 2 -6\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +6} \)]