Q1) h(x) =x -8. Find h'(x). [ h'(x) = x +8]
Q1) h(x) = \(x\over 4\) -3. Find h'(x). [ \(h'(x) \)= \(4(x +3)\)]
Q1) f(x) =\(x^ 2 -6\). Find f'(x). [ f'(x)= \( \sqrt[2]{x +6} \)]
Q2) \(f(x) =9{x}. \) Find \(f'(x).\) [ \(f'(x)\) = \(x\over9\)]
Q2) f(x) = 3 x + 7. Find f'(x). [ \(f'(x) \)= \({x -7}\over3\)]
Q2) f(x) =\(x^ 2 + 2\). Find f'(x). [ f'(x)= \( \sqrt[2]{x -2} \)]
Q3) f(x) =x -2. Find f'(x). [ f'(x) = x +2]
Q3) h(x) = \(x\over 10\) + 9. Find h'(x). [ \(h'(x) \)= \(10(x -9)\)]
Q3) g(x) =\( 5 x^ 3 -4\). Find g'(x). [ g'(x)= \( \sqrt[3]{{x +4}\over 5} \)]
Q4) g(x) =x -9. Find g'(x). [ g'(x) = x +9]
Q4) h(x) = \(x\over 10\) + 8. Find h'(x). [ \(h'(x) \)= \(10(x -8)\)]
Q4) f(x) =\(x^ 2 -5\). Find f'(x). [ f'(x)= \( \sqrt[2]{x +5} \)]
Q5) h(x) =x + 9. Find h'(x). [ h'(x) = x -9]
Q5) g(x) = 8 x -8. Find g'(x). [ \(g'(x) \)= \({x +8}\over8\)]
Q5) h(x) =\(x^ 3 -7\). Find h'(x). [ h'(x)= \( \sqrt[3]{x +7} \)]
Q6) h(x) =x -3. Find h'(x). [ h'(x) = x +3]
Q6) h(x) = 5 x -10. Find h'(x). [ \(h'(x) \)= \({x +10}\over5\)]
Q6) f(x) =\(x^ 2 + 7\). Find f'(x). [ f'(x)= \( \sqrt[2]{x -7} \)]
Q7) h(x) =x -7. Find h'(x). [ h'(x) = x +7]
Q7) h(x) = \(x\over 8\) -8. Find h'(x). [ \(h'(x) \)= \(8(x +8)\)]
Q7) h(x) =\( 2 x^ 3 -10\). Find h'(x). [ h'(x)= \( \sqrt[3]{{x +10}\over 2} \)]
Q8) \(h(x) =4{x}. \) Find \(h'(x).\) [ \(h'(x)\) = \(x\over4\)]
Q8) h(x) = 7 x + 5. Find h'(x). [ \(h'(x) \)= \({x -5}\over7\)]
Q8) g(x) =\(x^ 2 -10\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +10} \)]
Q9) h(x) =x -4. Find h'(x). [ h'(x) = x +4]
Q9) h(x) = \(x\over 6\) -3. Find h'(x). [ \(h'(x) \)= \(6(x +3)\)]
Q9) g(x) =\(x^ 2 -4\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +4} \)]
Q10) h(x) =x + 3. Find h'(x). [ h'(x) = x -3]
Q10) g(x) = \(x\over 10\) -10. Find g'(x). [ \(g'(x) \)= \(10(x +10)\)]
Q10) g(x) =\(x^ 2 -6\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +6} \)]