Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 140
10 < x ≤ 20 300
20 < x ≤ 30 150
30 < x ≤ 50 150
50 < x ≤ 70 130
[ mean =26.15]

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 130
10 < x ≤ 20 220
20 < x ≤ 40 165
40 < x ≤ 50 435
50 < x ≤ 60 190
[ var =287.5]

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 140
10 < x ≤ 20 290
20 < x ≤ 30 330
30 < x ≤ 50 240
50 < x ≤ 70 290
[ Standard Deviation =18.55]

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 20 110
20 < x ≤ 30 375
30 < x ≤ 50 420
50 < x ≤ 60 270
[ mean =34.32]

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 150
10 < x ≤ 20 150
20 < x ≤ 40 240
40 < x ≤ 60 330
60 < x ≤ 70 280
[ var =442.1]

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 85
10 < x ≤ 20 260
20 < x ≤ 30 330
30 < x ≤ 50 435
50 < x ≤ 60 210
[ Standard Deviation =14.87]

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 55
10 < x ≤ 30 160
30 < x ≤ 40 195
40 < x ≤ 50 150
50 < x ≤ 70 140
[ mean =36.36]

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 110
10 < x ≤ 30 230
30 < x ≤ 40 195
40 < x ≤ 60 270
60 < x ≤ 80 270
[ var =465.0]

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 210
20 < x ≤ 40 390
40 < x ≤ 60 150
60 < x ≤ 80 180
[ Standard Deviation =21.02]

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 130
10 < x ≤ 20 250
20 < x ≤ 40 150
40 < x ≤ 60 300
60 < x ≤ 80 130
[ mean =34.38]

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 30 110
30 < x ≤ 40 390
40 < x ≤ 60 210
60 < x ≤ 80 280
[ var =364.8]

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 120
10 < x ≤ 30 290
30 < x ≤ 50 255
50 < x ≤ 60 285
60 < x ≤ 70 250
[ Standard Deviation =20.07]

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 30 300
30 < x ≤ 40 255
40 < x ≤ 60 240
60 < x ≤ 80 290
[ mean =40.88]

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 30 180
30 < x ≤ 40 255
40 < x ≤ 60 240
60 < x ≤ 80 250
[ var =449.3]

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 190
20 < x ≤ 40 300
40 < x ≤ 50 315
50 < x ≤ 60 190
[ Standard Deviation =15.24]