Q1) \( 4 ^ {4}\) \(\div\) \( 4 ^{6} = \) [ \( 4 ^{-2}\)]
Q1) \( y ^ {4}\) \(\div\) \( y ^{10} = \) [ \( y ^{-6}\)]
Q1) \( { 9 ^ {7} \times 9 ^ {7}} \over 9 ^{3} \) = [ \( 9 ^{11}\)]
Q2) \( 6 ^ {8}\) \(\div\) \( 6 ^{3} = \) [ \( 6 ^{5}\)]
Q2) \( z ^ {8}\) \(\div\) \( z ^{2} = \) [ \( z ^{6}\)]
Q2) \( { w ^ {6} \times w ^ {5}} \over w ^{9} \) = [ \( w ^{2}\)]
Q3) \( 5 ^ {8}\) x \( 5 ^{7} = \) [ \( 5 ^{15}\)]
Q3) \( y ^ {4}\) x \(y ^{7} = \) [ \( y ^{11}\)]
Q3) \( { x ^ {6} \times x ^ {9}} \over x ^{5} \) = [ \( x ^{10}\)]
Q4) \( 3 ^ {6}\) x \( 3 ^{3} = \) [ \( 3 ^{9}\)]
Q4) \( x ^ {10}\) x \(x ^{5} = \) [ \( x ^{15}\)]
Q4) \( { 10 ^ {6} \times 10 ^ {5}} \over 10 ^{8} \) = [ \( 10 ^{3}\)]
Q5) \( 1 ^ {3}\) \(\div\) \( 1 ^{6} = \) [ \( 1 ^{-3}\)]
Q5) \( z ^ {4}\) x \(z ^{6} = \) [ \( z ^{10}\)]
Q5) \( { w ^ {2} \times w ^ {7}} \over w ^{8} \) = [ \( w \)]
Q6) \( 7 ^ {4}\) x \( 7 ^{2} = \) [ \( 7 ^{6}\)]
Q6) \( y ^ {5}\) x \(y ^{8} = \) [ \( y ^{13}\)]
Q6) \( { w ^ {10} \times w ^ {5}} \over w ^{2} \) = [ \( w ^{13}\)]
Q7) \( 2 ^ {8}\) x \( 2 ^{8} = \) [ \( 2 ^{16}\)]
Q7) \( y ^ {8}\) \(\div\) \( y ^{4} = \) [ \( y ^{4}\)]
Q7) \( { z ^ {10} \times z ^ {10}} \over z ^{7} \) = [ \( z ^{13}\)]
Q8) \( 2 ^ {3}\) \(\div\) \( 2 ^{7} = \) [ \( 2 ^{-4}\)]
Q8) \( w ^ {10}\) x \(w ^{10} = \) [ \( w ^{20}\)]
Q8) \( { w ^ {5} \times w ^ {10}} \over w ^{6} \) = [ \( w ^{9}\)]
Q9) \( 2 ^ {4}\) \(\div\) \( 2 ^{5} = \) [ \( 2 ^{-1}\)]
Q9) \( z ^ {2}\) \(\div\) \( z ^{5} = \) [ \( z ^{-3}\)]
Q9) \( { x ^ {10} \times x ^ {9}} \over x ^{5} \) = [ \( x ^{14}\)]
Q10) \( 2 ^ {7}\) x \( 2 ^{3} = \) [ \( 2 ^{10}\)]
Q10) \( x ^ {9}\) \(\div\) \( x ^{6} = \) [ \( x ^{3}\)]
Q10) \( { y ^ {2} \times y ^ {5}} \over y ^{5} \) = [ \( y ^{2}\)]