Mr Daniels Maths
Rearranging Formula 2

Set 1

Set 2

Set 3

Q1) y =z + 6. Rearrange to find z . [ \(z = y -6\)]

Q1) \(x =9z + 10\) . Find z . [ \(z \)= \({x -10}\over9\)]

Q1) x =\(y^ 3 -7\). Find y . [ y= \( \sqrt[3]{x +7} \)]

Q2) \(y =9z. \) Find \((z).\) [ \(z\) = \(y\over9\)]

Q2) \(x =2y -8\) . Find y . [ \(y \)= \({x +8}\over2\)]

Q2) y =\(x^ 3 -4\). Find x . [ x= \( \sqrt[3]{y +4} \)]

Q3) \(z ={w \over 6.} \) Find \(w\). [ \(w\) = \(6z\)]

Q3) z = \(y\over 6\) -8. Find y . [ \(y \)= \(6( z +8)\)]

Q3) y =\( 4 z^ 2 + 9\). Find z . [ z = \( \sqrt[2]{{y -9}\over 4} \)]

Q4) x =w + 5. Rearrange to find w . [ \(w = x -5\)]

Q4) \(y =5x + 6\) . Find x . [ \(x \)= \({y -6}\over5\)]

Q4) x =\( 5 z^ 3 + 8\). Find z . [ z = \( \sqrt[3]{{x -8}\over 5} \)]

Q5) z =x -7. Rearrange to find x . [ \(x = z +7\)]

Q5) z = \(x\over 4\) + 6. Find x . [ \(x \)= \(4( z -6)\)]

Q5) x =\(y^ 3 + 6\). Find y . [ y= \( \sqrt[3]{x -6} \)]

Q6) \(y =7w. \) Find \((w).\) [ \(w\) = \(y\over7\)]

Q6) x = \(y\over 8\) + 6. Find y . [ \(y \)= \(8( x -6)\)]

Q6) z =\( 3 y^ 2 + 8\). Find y . [ y = \( \sqrt[2]{{z -8}\over 3} \)]

Q7) \(y ={z \over 7.} \) Find \(z\). [ \(z\) = \(7y\)]

Q7) w = \(z\over 6\) -7. Find z . [ \(z \)= \(6( w +7)\)]

Q7) w =\( 3 z^ 3 -10\). Find z . [ z = \( \sqrt[3]{{w +10}\over 3} \)]

Q8) \(w ={x \over 10.} \) Find \(x\). [ \(x\) = \(10w\)]

Q8) \(z =8w + 8\) . Find w . [ \(w \)= \({z -8}\over8\)]

Q8) w =\( 10 y^ 3 -2\). Find y . [ y = \( \sqrt[3]{{w +2}\over 10} \)]

Q9) \(z =10w. \) Find \((w).\) [ \(w\) = \(z\over10\)]

Q9) w = \(z\over 5\) + 9. Find z . [ \(z \)= \(5( w -9)\)]

Q9) z =\(w^ 2 + 7\). Find w . [ w= \( \sqrt[2]{z -7} \)]

Q10) x =z + 2. Rearrange to find z . [ \(z = x -2\)]

Q10) \(w =9z -10\) . Find z . [ \(z \)= \({w +10}\over9\)]

Q10) y =\(x^ 2 -8\). Find x . [ x= \( \sqrt[2]{y +8} \)]