Mr Daniels Maths
Solving Inequalities with negatives 2

Set 1

Set 2

Set 3

Q1) \(7x -18 < 3x + 14\) [ ,\(x < 8\)]

Q1) \(4x -5 < 15x + 17\) [ ,\(x >\) -2]

Q1) \(7x -7 > 2x + 18\) [ ,\(x > 5\)]

Q2) \(6x -10 > 4x + 4\) [ ,\(x > 7\)]

Q2) \(4x + 4 < 12x + 4\) [ ,\(x >\) 0]

Q2) \(9x + 7 < 15x + 13\) [ ,\(x >\) -1]

Q3) \(5x -3 > 3x + 9\) [ ,\(x > 6\)]

Q3) \(6x -18 > 17x + 15\) [ ,\(x <\) -3]

Q3) \(12x + 8 > 13x + 19\) [ ,\(x <\) -11]

Q4) \(9x + 2 < 6x + 17\) [ ,\(x < 5\)]

Q4) \(2x -16 > 3x + 17\) [ ,\(x <\) -33]

Q4) \(11x + 20 > 13x + 10\) [ ,\(x <\) 5]

Q5) \(5x -17 > 3x + 17\) [ ,\(x > 17\)]

Q5) \(5x + 18 < 7x + 4\) [ ,\(x >\) 7]

Q5) \(6x -5 > 4x + 5\) [ ,\(x > 5\)]

Q6) \(6x -5 < 3x + 16\) [ ,\(x < 7\)]

Q6) \(5x + 12 > 8x + 9\) [ ,\(x <\) 1]

Q6) \(5x -12 > 2x + 6\) [ ,\(x > 6\)]

Q7) \(8x -12 < 3x + 18\) [ ,\(x < 6\)]

Q7) \(9x -9 < 14x + 6\) [ ,\(x >\) -3]

Q7) \(12x -20 < 8x + 8\) [ ,\(x < 7\)]

Q8) \(9x -7 < 6x + 8\) [ ,\(x < 5\)]

Q8) \(9x + 8 > 11x + 20\) [ ,\(x <\) -6]

Q8) \(20x -18 > 14x + 12\) [ ,\(x > 5\)]

Q9) \(10x + 8 > 8x + 12\) [ ,\(x > 2\)]

Q9) \(6x + 17 < 7x + 17\) [ ,\(x >\) 0]

Q9) \(19x -3 < 9x + 17\) [ ,\(x < 2\)]

Q10) \(6x -6 < 2x + 10\) [ ,\(x < 4\)]

Q10) \(10x -12 > 11x + 3\) [ ,\(x <\) -15]

Q10) \(10x -10 < 11x + 13\) [ ,\(x >\) -23]