Mr Daniels Maths
Squares Cubes and Roots

Set 1

Set 2

Set 3

Q1) \(9^2\) = [ 81]

Q1) \( \sqrt[2]{9}\)= [ 3 ]

Q1) \( \sqrt[2]{9}\) + \(4 ^ 2\)= [ 19]

Q2) \(9^3\) = [ 729]

Q2) \( \sqrt[3]{216}\)= [ 6 ]

Q2) \( \sqrt[3]{64}\) + \(3 ^ 3\)= [ 31]

Q3) \(6^2\) = [ 36]

Q3) \( \sqrt[2]{4}\)= [ 2 ]

Q3) \( \sqrt[3]{8}\) + \(4 ^ 3\)= [ 66]

Q4) \(1^2\) = [ 1]

Q4) \( \sqrt[3]{729}\)= [ 9 ]

Q4) \( \sqrt[3]{125}\) + \(8 ^ 2\)= [ 69]

Q5) \(2^2\) = [ 4]

Q5) \( \sqrt[2]{64}\)= [ 8 ]

Q5) \( \sqrt[3]{27}\) + \(2 ^ 3\)= [ 11]

Q6) \(9^2\) = [ 81]

Q6) \( \sqrt[2]{100}\)= [ 10 ]

Q6) \( \sqrt[2]{36}\) + \(10 ^ 3\)= [ 1006]

Q7) \(7^2\) = [ 49]

Q7) \( \sqrt[2]{49}\)= [ 7 ]

Q7) \( \sqrt[2]{25}\) + \(6 ^ 3\)= [ 221]

Q8) \(3^2\) = [ 9]

Q8) \( \sqrt[3]{512}\)= [ 8 ]

Q8) \( \sqrt[2]{1}\) + \(8 ^ 3\)= [ 513]

Q9) \(8^2\) = [ 64]

Q9) \( \sqrt[2]{9}\)= [ 3 ]

Q9) \( \sqrt[2]{81}\) + \(6 ^ 2\)= [ 45]

Q10) \(1^2\) = [ 1]

Q10) \( \sqrt[2]{49}\)= [ 7 ]

Q10) \( \sqrt[3]{343}\) + \(7 ^ 3\)= [ 350]