Mr Daniels Maths
Surds:Brackets

Set 1

Set 2

Set 3

Q1) \(5 ( 3 + \sqrt { 5 } )= \) [ \(15 + \) \(5\sqrt{5}\)]

Q1) \( \sqrt { 4 } ( 4 + \sqrt { 13 } )= \) [ \(8\) + \(2\sqrt{13}\) ]

Q1) \((4 + \sqrt6)(3+ \sqrt2 ) \) [ 12+\(4\sqrt{2}\)+\(3\sqrt{6}\)+\(2\sqrt{3}\)]

Q2) \(5 ( 1 + \sqrt { 5 } )= \) [ \(5 + \) \(5\sqrt{5}\)]

Q2) \( \sqrt { 5 } ( 3 + \sqrt { 2 } )= \) [ \(3\sqrt{5}\) + \(\sqrt{10}\) ]

Q2) \((3 + \sqrt15)(5+ \sqrt7 ) \) [ 15+\(3\sqrt{7}\)+\(5\sqrt{15}\)+\(\sqrt{105}\)]

Q3) \(2 ( 4 + \sqrt { 8 } )= \) [ \(8 + \) \(4\sqrt{2}\)]

Q3) \( \sqrt { 2 } ( 2 + \sqrt { 3 } )= \) [ \(2\sqrt{2}\) + \(\sqrt{6}\) ]

Q3) \((4 + \sqrt2)(1+ \sqrt3 ) \) [ 4+\(4\sqrt{3}\)+\(\sqrt{2}\)+\(\sqrt{6}\)]

Q4) \(4 ( 5 + \sqrt { 14 } )= \) [ \(20 + \) \(4\sqrt{14}\)]

Q4) \( \sqrt { 4 } ( 1 + \sqrt { 2 } )= \) [ \(2\) + \(2\sqrt{2}\) ]

Q4) \((5 + \sqrt12)(5+ \sqrt7 ) \) [ 25+\(5\sqrt{7}\)+\(10\sqrt{3}\)+\(2\sqrt{21}\)]

Q5) \(5 ( 3 + \sqrt { 6 } )= \) [ \(15 + \) \(5\sqrt{6}\)]

Q5) \( \sqrt { 3 } ( 2 + \sqrt { 5 } )= \) [ \(2\sqrt{3}\) + \(\sqrt{15}\) ]

Q5) \((2 + \sqrt8)(5+ \sqrt8 ) \) [ 18+\(14\sqrt{2}\)]

Q6) \(4 ( 4 + \sqrt { 15 } )= \) [ \(16 + \) \(4\sqrt{15}\)]

Q6) \( \sqrt { 3 } ( 5 + \sqrt { 5 } )= \) [ \(5\sqrt{3}\) + \(\sqrt{15}\) ]

Q6) \((2 + \sqrt3)(3+ \sqrt3 ) \) [ 9+\(5\sqrt{3}\)]

Q7) \(3 ( 3 + \sqrt { 5 } )= \) [ \(9 + \) \(3\sqrt{5}\)]

Q7) \( \sqrt { 3 } ( 5 + \sqrt { 6 } )= \) [ \(5\sqrt{3}\) + \(3\sqrt{2}\) ]

Q7) \((3 + \sqrt3)(1+ \sqrt3 ) \) [ 6+\(4\sqrt{3}\)]

Q8) \(4 ( 2 + \sqrt { 5 } )= \) [ \(8 + \) \(4\sqrt{5}\)]

Q8) \( \sqrt { 4 } ( 3 + \sqrt { 3 } )= \) [ \(6\) + \(2\sqrt{3}\) ]

Q8) \((4 + \sqrt11)(5+ \sqrt3 ) \) [ 20+\(4\sqrt{3}\)+\(5\sqrt{11}\)+\(\sqrt{33}\)]

Q9) \(4 ( 5 + \sqrt { 13 } )= \) [ \(20 + \) \(4\sqrt{13}\)]

Q9) \( \sqrt { 2 } ( 1 + \sqrt { 2 } )= \) [ \(\sqrt{2}\) + \(2\) ]

Q9) \((4 + \sqrt2)(1+ \sqrt2 ) \) [ 6+\(5\sqrt{2}\)]

Q10) \(3 ( 1 + \sqrt { 2 } )= \) [ \(3 + \) \(3\sqrt{2}\)]

Q10) \( \sqrt { 4 } ( 5 + \sqrt { 14 } )= \) [ \(10\) + \(2\sqrt{14}\) ]

Q10) \((5 + \sqrt3)(2+ \sqrt10 ) \) [ 10+\(5\sqrt{10}\)+\(2\sqrt{3}\)+\(\sqrt{30}\)]