Q1) \(\sqrt 80 \over{ \sqrt{ 8}} \) = [ \(\sqrt{10}\)]
Q1) \(2 \sqrt 36 \over{ \sqrt 4} \) = [ \(6\)]
Q1) \(25 \sqrt 6 \over{ 5 \sqrt 3} \) = [ \(5\sqrt{2}\)]
Q2) \(\sqrt 40 \over{ \sqrt{ 10}} \) = [ \(2\)]
Q2) \(4 \sqrt 4 \over{ \sqrt 2} \) = [ \(4\sqrt{2}\)]
Q2) \(4 \sqrt 8 \over{ 2 \sqrt 4} \) = [ \(2\sqrt{2}\)]
Q3) \(\sqrt 10 \over{ \sqrt{ 5}} \) = [ \(\sqrt{2}\)]
Q3) \(4 \sqrt 49 \over{ \sqrt 7} \) = [ \(4\sqrt{7}\)]
Q3) \(9 \sqrt 8 \over{ 3 \sqrt 2} \) = [ \(6\)]
Q4) \(\sqrt 36 \over{ \sqrt{ 6}} \) = [ \(\sqrt{6}\)]
Q4) \(2 \sqrt 21 \over{ \sqrt 7} \) = [ \(2\sqrt{3}\)]
Q4) \(6 \sqrt 9 \over{ 2 \sqrt 3} \) = [ \(3\sqrt{3}\)]
Q5) \(\sqrt 12 \over{ \sqrt{ 6}} \) = [ \(\sqrt{2}\)]
Q5) \(2 \sqrt 27 \over{ \sqrt 3} \) = [ \(6\)]
Q5) \(8 \sqrt 25 \over{ 4 \sqrt 5} \) = [ \(2\sqrt{5}\)]
Q6) \(\sqrt 6 \over{ \sqrt{ 3}} \) = [ \(\sqrt{2}\)]
Q6) \(5 \sqrt 12 \over{ \sqrt 6} \) = [ \(5\sqrt{2}\)]
Q6) \(16 \sqrt 12 \over{ 4 \sqrt 4} \) = [ \(4\sqrt{3}\)]
Q7) \(\sqrt 20 \over{ \sqrt{ 5}} \) = [ \(2\)]
Q7) \(3 \sqrt 6 \over{ \sqrt 3} \) = [ \(3\sqrt{2}\)]
Q7) \(25 \sqrt 6 \over{ 5 \sqrt 3} \) = [ \(5\sqrt{2}\)]
Q8) \(\sqrt 5 \over{ \sqrt{ 1}} \) = [ \(\sqrt{5}\)]
Q8) \(2 \sqrt 36 \over{ \sqrt 9} \) = [ \(4\)]
Q8) \(15 \sqrt 15 \over{ 3 \sqrt 3} \) = [ \(5\sqrt{5}\)]
Q9) \(\sqrt 64 \over{ \sqrt{ 8}} \) = [ \(2\sqrt{2}\)]
Q9) \(3 \sqrt 42 \over{ \sqrt 7} \) = [ \(3\sqrt{6}\)]
Q9) \(15 \sqrt 12 \over{ 3 \sqrt 3} \) = [ \(10\)]
Q10) \(\sqrt 63 \over{ \sqrt{ 7}} \) = [ \(3\)]
Q10) \(4 \sqrt 18 \over{ \sqrt 3} \) = [ \(4\sqrt{6}\)]
Q10) \(8 \sqrt 10 \over{ 4 \sqrt 5} \) = [ \(2\sqrt{2}\)]