Q1) \(\sqrt{160}\) = [ \(4\sqrt{10}\)]
Q1) \(2\sqrt 9 \) x \(2\sqrt 2= \) [ \(12\sqrt{2}\)]
Q1) \(\sqrt { 20 } \) + \(\sqrt { 245 }= \) [ \(9\sqrt{5}\)]
Q2) \(\sqrt{45}\) = [ \(3\sqrt{5}\)]
Q2) \(10 \sqrt 45 \over{ 2 \sqrt 5} \) = [ \(15\)]
Q2) \(\sqrt { 405 } \) - \(\sqrt { 80 }= \) [ \(5\sqrt{5}\)]
Q3) \(\sqrt{32}\) = [ \(4\sqrt{2}\)]
Q3) \(25 \sqrt 25 \over{ 5 \sqrt 5} \) = [ \(5\sqrt{5}\)]
Q3) \(\sqrt { 320 } \) - \(\sqrt { 180 }= \) [ \(2\sqrt{5}\)]
Q4) \(\sqrt{80}\) = [ \(4\sqrt{5}\)]
Q4) \(25 \sqrt 18 \over{ 5 \sqrt 3} \) = [ \(5\sqrt{6}\)]
Q4) \(\sqrt { 125 } \) + \(\sqrt { 405 }= \) [ \(14\sqrt{5}\)]
Q5) \(\sqrt{24}\) = [ \(2\sqrt{6}\)]
Q5) \(2\sqrt 6 \) x \(3\sqrt 3= \) [ \(18\sqrt{2}\)]
Q5) \(\sqrt { 180 } \) + \(\sqrt { 125 }= \) [ \(11\sqrt{5}\)]
Q6) \(\sqrt{20}\) = [ \(2\sqrt{5}\)]
Q6) \(20 \sqrt 15 \over{ 5 \sqrt 3} \) = [ \(4\sqrt{5}\)]
Q6) \(\sqrt { 300 } \) - \(\sqrt { 108 }= \) [ \(4\sqrt{3}\)]
Q7) \(\sqrt{32}\) = [ \(4\sqrt{2}\)]
Q7) \(5\sqrt 7 \) x \(4\sqrt 9= \) [ \(60\sqrt{7}\)]
Q7) \(\sqrt { 243 } \) - \(\sqrt { 48 }= \) [ \(5\sqrt{3}\)]
Q8) \(\sqrt{45}\) = [ \(3\sqrt{5}\)]
Q8) \(4\sqrt 2 \) x \(3\sqrt 8= \) [ \(48\)]
Q8) \(\sqrt { 180 } \) + \(\sqrt { 405 }= \) [ \(15\sqrt{5}\)]
Q9) \(\sqrt{125}\) = [ \(5\sqrt{5}\)]
Q9) \(3\sqrt 4 \) x \(5\sqrt 9= \) [ \(90\)]
Q9) \(\sqrt { 405 } \) + \(\sqrt { 180 }= \) [ \(15\sqrt{5}\)]
Q10) \(\sqrt{45}\) = [ \(3\sqrt{5}\)]
Q10) \(2\sqrt 9 \) x \(5\sqrt 6= \) [ \(30\sqrt{6}\)]
Q10) \(\sqrt { 300 } \) + \(\sqrt { 12 }= \) [ \(12\sqrt{3}\)]